Reprinted from Mathematics Magazine 39.5(1966)314.

Confused Statements
370. [March, 1959] Proposed by D. L. Silverman, Greenbelt, Maryland.

Let $x y$ denote x 's statement to y. Determine the truth or falsity of the following set of statements:
$A B$: Someone is not lied to.
$A C$: Someone lies twice.
$B A$: Someone neither lies twice nor is lied to twice.
$B C$: Someone is lied to twice.
$C A$: Someone lies and is lied to.
$C B$: Someone does not lie.

Solution by Stanley Rabinowitz, Far Rockaway, New York.
Consider the truth-values of the statements $A B$ and $B C$. There are only four possibilities (if these truth values exist):
(i) $A B \wedge B C$
$\Rightarrow(\sim B A) \wedge(\sim C A) \quad$ [since someone is lied to twice]
$\Rightarrow B A$
[since B neither lies twice nor is lied to twice]
contradiction
(ii) $A B \wedge(\sim B C)$
$\Rightarrow A C$
$\Rightarrow C B$
$\Rightarrow(\sim B A)$
$\Rightarrow B A$
[otherwise C would be lied to twice]
[since A does not lie]
[since someone lies twice]
[C neither lies twice nor is lied to twice]
contradiction
(iii) $(\sim A B) \wedge B C$

$$
\begin{aligned}
& \Rightarrow(\sim A C) \\
& \Rightarrow A C
\end{aligned}
$$

[otherwise C would not be lied to] [A lies twice]
contradiction
(iv) $(\sim A B) \wedge(\sim B C)$

$$
\begin{aligned}
& \Rightarrow A C \\
& \Rightarrow C B \\
& \Rightarrow(\sim B A) \\
& \Rightarrow B A
\end{aligned}
$$

[otherwise C would be lied to twice] [otherwise B would be lied to twice] [someone must lie twice]
[C neither lies twice nor is lied to twice]
contradiction
Since all these cases are inconsistent, the given set of statements must be self-contradictory.

